
Automatic Parallelism in JavaScript

Rosetta Reatherford
Computer Science and Software Engineering

Rose-Hulman Institute of Technology
Terre Haute, Indiana

rosetta.reatherford@gmail.com

Dr. Micah Taylor
Computer Science and Software Engineering

Rose-Hulman Institute of Technology
Terre Haute, Indiana

taylormt@rose-hulman.edu

Abstract—Automatic parallelism is a new frontier in computer
science. There has been some success in various languages of
achieving automatic parallelism. Largely, these tools have been
for C and C++. JavaScript, one of the most widely used
programming languages on the internet, has had few attempts at
automatic parallelism. These attempts have been held back by
issues with client-side differences and vague scopes inherent to
JavaScript as a language. However, we have successfully
managed to convert JavaScript to parallel code by using a
compiler which enforces ECMAScript style on coders. This
avoids some of the issues inherent to analyzing JavaScript code
for possible parallelization. The code is able to be compiled by
developers and then uploaded on their servers. This ensures that
any users with multiple cores are able to execute the parallel
sections. The focus of this paper was on well-defined for-loops.

Index Terms—Parallelism, for-loops, JavaScript, closure,
compiler

I. INTRODUCTION
Parallelism is an issue being increasingly addressed in

technology and programming. Sadly, Moore’s law has become
more of a curse than a gift, which is driving multicore
development [1]. However, for one of the world’s leading
languages on the internet, JavaScript, attempts at parallelism
have not been able to robustly address making the language
more parallel. Despite introducing Web Workers in 2009, most
programmers do not take advantage of the JavaScript
supported threads. This is largely credited to the many issues
Web Workers have for programmers. New solutions are on the
horizon which would aide development, although there are
libraries which seek to enhance JavaScript threading currently.
This thesis explores using a JavaScript compiler to identify
parallel JavaScript for well-defined for loops.

A. Motivation
JavaScript is one of the most popular languages on the web.

As of 2011, it 95% of internet users had a browser capable of
handling JavaScript [2]. The capabilities of the language make

it attractive for programmers to use in order to make rich and
interactive web pages. However, there are limitations to what
the language can do as it relies heavily on single-threaded
client-side execution. Even though HTML5 introduced Web
Workers which allow multithreaded application of JavaScript,
many programmers have shied from using them in their code
[3]. This slow-down can be attributed to difficulties with
concurrency as well as possible issues with the complex and
sometimes confusing ways in which Web Workers access and
pass information between themselves [4].

Parallelism is a well-defined issue with a few solutions.
While the nature of JavaScript can differ significantly from
other languages and requires a different approach [5], there has
been research conducted on how to optimally parallelize code,
such as through thread-level speculation which dies upon
dependency violations [6].

B. Use of the Closure Compiler
The flexible and easy-to-used nature of Google’s Closure

Compiler makes it attractive to use. Typically, it is used as a
minifying and optimization tool that reduces unnecessary or
redundant code as well as unneeded white space to speed
download time for clients. The way the program works also
makes it quite attractive for static analysis tools. It converts
JavaScript to Java through abstract syntax trees and then back
to JavaScript after modification. The process of Closure
Compiler is detailed in a later section.

The ability of the compiler helped manage some of the
issues with JavaScript usually encountered when trying to
parallelize or analyze the code. This ability sets our approach
aside from others. It only requires developers to run the code
through the compiler and upload the ParallelJS library [7].
There is no extra work needed on the part of the client in order
to begin taking advantage of the parallel code. The process also
allows developers to have more control. They can review the
changes before committing to them.

C. Use of ParallelJS

The use of the library, ParallelJS, is purely an issue of
reducing complexity. It is a lightweight library that eases the
use of parallel Web Worker code within JavaScript. It allows
running functions within the current file as parallel. With other
Web Worker code, the functions that a developer is attempting
to run in parallel over certain data must be placed into separate
files. The lightweight nature of the library made it attractive for
the purposes of this paper.

II. CLOSURE COMPILER
Google’s Closure Compiler is an open source compiler for

JavaScript. The compiler converts JavaScript into Java
through abstract syntax trees and back to JavaScript after
modification. The process of the Closure Compiler makes it
unique in its interpretation of JavaScript data. Even without
the explicit type annotations, the analysis is usually able to
easily infer what is intended by the developer. The break
down into the abstract syntax trees allows them to be modified
and altered in a fashion that allows for the trees to be checked
for any problems which could cause errors.

A. Overview of Compilation
Compilation is done in a few steps. This is given by an

overview within Google’s documentation [8]. The first step is
to create the Compiler instance and process the command line
arguments given by the user. It then parses the code into an
Abstract-Syntax Tree (AST). Next, the compiler runs all the
Compiler passes that will make modifications to the AST. The
AST Tree is then converted to JavaScript and output to a file.
There are other optional commands which can change this
process, but this is the typical use case.

B. The Abstract-Syntax Tree (AST)
The AST that the code is converted to has a great deal of

information attached to each node [9]. This information can be
accessed through simple commands that allow a developer to
tell the type of the node and receive context for its role. In
example is shown in Figure 2 and Figure 1. This shows the
complicated way the compiler breaks the code into an AST for
conversion into JavaScript.

C. Modification
Modification from add-on developers, such as the method,

approached by our paper, is done mainly through Compiler
Passes [10]. A Compiler Pass modifies the AST by traversing
the nodes within the trees. Nodes can be added, removed, or
modified in order to make changes to the tree.

The advantage of this method is that not much
understanding is needed of the Closure Compiler while
allowing a great degree of information and avoiding large
modification to the overall process of the compiler. This
allowed us to access a lot of information about the code
without needing to parse and interpret it ourselves. This saves
time and allows for the focus to be on interpreting the nodes
for parallelism than attempting to interpret the scope and
possible issues that occur with static analysis of JavaScript.

III. APPROACH
The approach taken was to focus efforts on for-loops to

narrow the scope of variables and restraints for parallelizing
blocks of code within these areas. The simple dependencies
considered are below, erring on the side of caution and
avoidance of dependency issues.

A. Dependency rules
1) A variable may not be equal to itself unless it is in an

array
Variables may be equal to any expression as long as that

expression is not the same variable. For example,

x = x + 1;

is not a valid parallelizable expression. However, this is not
true for the case of arrays, where the value may be imported
through the JSON data. For example,

a[i] = a[i] + 1;

is a valid parallelizable expression.
2) An array variable may not contain different math

expressions to access the array at a certain point
An array variable may contain an expression in order to

access a value at the result of that expression. However, this
must be a consistent expression for it to be treated as possibly
parallelizable. For example,

a[i + 1] = a[i + 1] + 1;

is a valid expression, while

a[i + 1] = a[i + 2] + 1;

Figure 1: The Code converted to an AST in Figure 2.

Figure 2: The AST for the code in Figure 1.

is not a valid expression.

B. Analysis Process

The analysis done within the Compiler Pass is done by a
process of node traversal. First, the compiler pass does a post-
order traversal through the AST to skim for for-loops. When a
for-loop is found, it begins traversal over the internal code
block of the for-loop. This traversal finds variable assignments
and saves the left-hand side in a set, then traverses through the
right-hand side for any violation of the dependency rules listed
above. If a violation is found, a flag is set that notifies the
Compiler Pass that the code block is not able to be parallelized.
This results in the code being ignored and remaining
unconverted to the parallel format. When all variables assigned
and used are found, the Compiler Pass begins the process of
converting the for-loop into parallel code.

The conversion begins by dividing the total amount of work
over the number of cores the client computer has. This is a
variable number which is common to JavaScript. Once this is
done, the Compiler Pass creates an array to store JSON data
that will be sent to the worker function. It then calculates where
the thread should begin and end, saving those in the newly
created array. Any values which the thread will need to know
for expressions will also be placed into the array. The Compiler
Pass utilizes the ParallelJS library to create and spawn a thread
which will call the worker function and assigns the callback to
the callback function. A new for loop is created which iterates
over the number of threads in order to do this for each thread
that will be spawned. This newly created for-loop is added to a
list that will replace the original for-loop after this traversal has
finished.

The next step is redoing the original for-loop. The
Compiler Pass then begins the process of renaming variables

within the loop block. It renames all variables to an object
within the incoming and outgoing JSON data, scrubbing the
old variable names from the block. The old and new nodes are
saved in a Hash Map which is utilized during the creation of
the callback function to assign variables to their final values by
accessing the list of variables assigned during the for-loop
block. Using those assignments, the callback function uses the
Hash Map of renamed variables to create the assignments.

Once this has finished, the modified for-loop is placed into
a function which can be sent a single argument, the JSON data.
This will be added to the main body of the code and be
processed back into JavaScript along with all other processes.

Figure 4: Result of the code in Figure 3.

Figure 3: Code being converted, a simple for loop.

C. Results of analysis
The result of breaking down one for-loop into parallel code

during this method generates a for-loop that iterates over the
number of cores the client has, a work function that processes
the computations of the original for-loop, and a callback
function which assigns the values back to the variable. The
results of the simple for-loop in Figure 3 is shown in Figure 4.
As can be seen, the amount of code added is significant, but the
conversions are clear.

D. Problems
1) Nested for-loops

The compiler cannot fully recognize nor handle nested for-
loops. This was largely outside the scope of this work and
comes with some issues of its own.

2) No blocking
When a for-loop has been made parallel, it does not block

subsequent, dependent code. If a variable is changed within the
for-loop and used after it, the variable may contain the
incorrect value.

3) Objects in arrays
Objects in arrays are difficult for the Compiler Pass to

handle. Largely, they will be ignored or written to or from
incorrectly.

IV. PERFORMANCE
On average, the performance was much slower than serial

code. The performance tests are discussed below. A
significantly large computation was done which took a few
square roots of large numbers in order to slow performance.

A. Performance Results
The performance tests are shown above. The parallel code

was not faster than serial code even one time. CPU utilization
did show that more than one core was being utilized, but often
not enough to meet the threads specified. For example, eight
threads would be spawned, but only 4 would be used.

B. Data Analysis
The performance indicates browser-dependent issues with

Web Workers. Safari was able to maintain six times slower
performance with the number of threads, but Firefox had jumps
and dips in its performance which indicate arbitrary thread
scheduling. Some of this slowdown is due to the reassigning of
data, but this should not accumulate slowdowns in the way the
results indicate.

V. CONCLUSION
JavaScript can be statically analyzed and made parallel by

utilizing the correct tools. However, the performance tests
suggest that Web Workers and the Internet may not be ready
for fully parallel JavaScript. More advancements are needed in
this area before work like this can be fully utilized or built
upon to become useful for developers to begin using.

VI. BIBLIOGRAPHY

[1] N. Bliss, "Addressing the Multicore Trend with
Automatic Parallelization," Lincoln Laboratory Journal,

vol. 17, no. 1, pp. 187-198, 2007.
[2] M. Mehrara, P.-C. Hsu, M. Samadi and S. Mahlke,

"Dynamic Parallelization of JavaScript Applications

1	
2	
3	
4	
5	
6	
7	
8	
9	

10	
11	
12	
13	
14	
15	

Serial	 1	 2	 4	 8	 16	

Ti
m
es
	S
lo
w
er
	

Threads	

Performance	Results	based	on	Times	Slower	than	Slower	per	Browser	

Firefox		 Safari		 Chrome		

Using an Ultra-lightweight Speculation Mechanism,"
IEEE, pp. 87-98, 2011.

[3] E. Fortuna, O. Anderson, L. Ceze and S. Eggers, "A Limit
Study of JavaScript Parallelism," 2010. [Online].

Available:
https://homes.cs.washington.edu/~luisceze/publications/fo

rtuna-iiswc2010.pdf. [Accessed 3 November 2015].
[4] "Web Workers," W3C, 24 Sep 2015. [Online]. Available:

https://www.w3.org/TR/workers/#references. [Accessed
20 May 2016].

[5] K. Dewey, V. Kashyap and B. Hardekopf, "A Parallel
Abstract Interpreter for JavaScript," in IEEE/ACM
International Symposium on Code Generation and

Optimization, Santa Barbara, 2015.
[6] H. Zhong, M. Mehrara, S. Lieberman and S. Mahlke,

"Uncovering Hidden Loop Level Parallelism in
Sequential Applications," University of Michigan, Ann

Arbor, MI.
[7] A. Savitzky and S. Mayr, "Parallel.js: Parallel Computing

with JavaScript," [Online]. Available:
https://adambom.github.io/parallel.js/. [Accessed 20 May

2016].

[8] D. Vardoulakis, "High level overview of a compilation
job," Google, 8 Mar 2016. [Online]. Available:

https://github.com/google/closure-compiler/wiki/High-
level-overview-of-a-compilation-job. [Accessed 11 May

2016].
[9] N. Santos, "Closure Compiler AST Documentation," 22

Sep 2010. [Online]. Available: https://closure-
compiler.googlecode.com/files/closure-compiler-ast.pdf.

[Accessed 19 May 2016].
[10

]
M. Zhou, "Links to Closure Compiler design documents

and proposals," Google, 15 Feb 2016. [Online].
Available: https://github.com/google/closure-

compiler/wiki/Design-Documents. [Accessed 11 May
2016].

